

AGENDA

OIV Resolution zum AgCl

RESOLUTION OIV/OENO 145/2009
BEHANDLUNG MIT SILBERCHLORID
DIE GENERALVERSAMMLUNG,
in Anbetracht von Artikel 2 Absatz 2 Ziffer ii des Übereinkommens vom 3. April 2001 zur Gründung der Internationalen Organisation für Rebe und Wein,
nach Kenntnisnahme der Arbeiten der Sachverständigengruppe „Internationaler Kodex aer önologischen Praxis",
in Anbetracht der in der 14. Sitzung der Gruppe „Lebensmittelsicherheit" abgege be en positiven Stellungnahme

BESCHLESST: auf Vorschlag der Kommission II "Onologie", in besagtern in ornationalen Kodex der önologischen Praxis" folgende önologische Verfahren und Behandlu nge aufzunehmen:

BESCHLIESST, entsprechende Dokumente der OIV dur ${ }^{1}$, Angabe der maximal zulăssigen silberrückstănde im Wein zu aktualisieren.

TEIL II
Kapitel 3: „Weine"
Behandlung mit Silberchlorid
Definition:
zugabe von silbe cl lorid zum Wein

ziel: \cap

Rflduzlyung von durch Schwefelwasserstoff und einigen Mercaptanen verursachten Geruchsfehlern
a) Die Anwendungsmenge darf $1 \mathrm{~g} / \mathrm{hl}$ nicht überschreiten.
b) Silberchlorid ist zuvor mit einem inerten Träger wie Kieselgur (Diatomenerde) oder Kaolin zu verwenden.
c) Vor der Behandlung ist durch Versuche die Menge des zuzuführenden Produkts zu bestimmen.
d) Der Niederschlag ist durch geeignete physikalische Mittel zu entfernen
e) Die Behandlung der Rückstände muss durch den spezialisierten Sektor erfolgen.
f) Der behandelte Wein ist zu analysieren, um sicherzustellen, dass Rückstände den Grenzwert von $0,1 \mathrm{mg} / \mathrm{L}$ in Silber nicht übersteigen.
g) Die Behandlung muss ist unter der Verantwortung eines Önologen oder spezialisierten ers erfolgen.
h) Das Silberchlorid muss den Vorschriften des internationalen önologischen Kodex entsprechen.

VVUs ヒIVVUIIEII VVII VUII VVEII IEIヒI
Die Bildung positiver Schwefel-Aromen!

ERBSLOH

Wie kommt der Schwefel in den Wein?

Zeitpunkte der möglichen Böckser-Bildung

M जIIfIIIC v Ca. 50% des Glutathions verbleiben im Cytoplasma und der Rest verbleibt in der Zentral-Vakuole während des Wachstums aut ausreichend Stickstoff-versorgtem Medium. Bei N-Unterversorgung werden 90% des Glutathions in der Vakuole abgebaut (Mehi Penninckx 1997).

Ammonium reprimiert die Sulfitreductase!

Wechselwirkung mit Cu-lonen!
 Mangel Vitamin B5/B6

Wirkung von elementarem Schwefel auf die Bildung schwefeliger Verbindungen während der Gärung

$\mu \mathrm{g} / \mathrm{L}$	$\mathrm{H}_{2} \mathrm{~S}$	MeSAc	EtSAc	MeSSEt	DEDS	DMDS	EtSH	Böckser
Kontrolle	53	6,9	3,4	SP	-	0,5	-	-
								3
SO_{2}	5	14,6	4,1	0,02	-	SP	-	+
						Ω		
$0.5 \mathrm{~S}_{8}$	16	29	41.1	0.08	0.01	SP	-	+
S_{8}	184	63,7	151,1	0.08	M 68	SP	0,3	+
				\cdots				
$0.5 \mathrm{~S}_{8} / \mathrm{DAHP}$	22	21	23.9	0.11	0,01	0.64	-	+
S_{8} ID AHP	83	53.7	402.5	0.06	0.05	SP	0.3	+
			1-9					
$0.5 \mathrm{~S}_{8} / \mathrm{DAHP} / \mathrm{Cu}$	37	16	22,3	0,04	-	0,2	-	+
$\mathrm{S}_{8} / \mathrm{DAHP} / \mathrm{Cu}$	6a	32.4	67.5	0,05	SP	SP	0.05	+

S_{8}	$5 / 10 \mathrm{mg} / \mathrm{L}$	
DA. 3 ?	$300 \mathrm{mg} / \mathrm{L}$	
CuSO $_{4}$	$10 \mathrm{mg} / \mathrm{L}$	nach Gärung
SP	Spuren	
SO_{2}	$300 \mathrm{mg} / \mathrm{L}$	

Most $70^{\circ} \mathrm{Oe}, \mathrm{pH} 3,2$, Gärtemperatur $20^{\circ} \mathrm{C}$

Glutathion - Ein Schaf im Wolfspelz

ERBSLÖH

Das Tripeptid, Glutathion (I-ү-Glutamyl-I-cystinyl-glycin)

Glutathion ist bereits in Trauben und Most vorhanden:

in Trauben: 17-140 mg/l
in Mosten: 13-102 mg/l
in Weinen: 0,1 and $5,1 \mathrm{mg} / \mathrm{l}$
(Okuda \& Yokotsuka, 1999; Park, Boulton \& Noble, 2000)
GSH ist zu ca.1\% in der Trockenreinzuchthefe enthalten (S. cerevisiat und stellt damit mehr als 95\% des niedermolekularen Schwefelpools der Hefe dar (Elskens, Jaspers, \& Penninckx, 1991).

Die hohe Konzentration von Glutathich in Hefezellen und sein niedriges Redoxpotential ($\mathrm{E} 0=-240 \mathrm{mV}$, pH $\mathrm{B}_{\text {) }}$)macht das Tripeptid zu einem zellulären Redoxpuffer.

In S. cerevisiae ist ciiese Verbindung in eine Vielzahl von Stress-Antwort-Mecharismen eingebunden:

- Schwefel und Stickstoff Mangel
- Oxidativer Stress
-Detoxifizierung von Xenobiotika
-Schwermetall Stress
-Erhalt der zellulären Strukturintegrität

nfluß verschiedener GSH-Gaben zum Most auf die Bildung von Schwefelwasserstoff, Ethanthiol (EtSH), Thioessigsaaure-Səthylester (MeSAc) un@Thoessigsäure-S-ethylester (EtSAc) während der Garrung (Werner and Rauhut 2007, unpublished).

ERBSLOH

Velche Gene sind für die $\mathrm{H}_{2} \mathrm{~S}$-Bildung verantwortlicl

suitat keaukıons-১ıomwecnseiweg aer vveinnete

Weitere Gene, die bei Deletion zu Sulfid-Bildung führen

GOS1: Type II Membranprotein (SNARE) involviert in den Substrat-Transport
FCY22: Permease: unterstützt Purine-Cytosin Transport
TPO2: Transportiert bei Überschuss Acetaldehyd aus der Zelle: Acetaldehyd induziert den
Sulfatreduktions-Weg (Bindungspartner: Methionin, S-Adenosylmethiayin, Cystein, Sulfit)

Wie entstehen „verhockte" Böckser

ERBSLÖH

Wie entstehen „verhockte" Böckser

Einfluss der Lagerung auf die Reaktionsprodukte von $\mathrm{H}_{2} \mathrm{~S}$ und Acetaldehyd sowie Cu-Zugabe

Wia wirkt Silberchlorid im Vergleich zu Kupfersalzen?

ERBSLÖH

Silberchlorid und seine Eigenschaften

- Silberchlorid ist ein seit 1960 patentiertes und Behandlungsmittel zur Entfernung von Böcksern im Wein
- Anwendung wurde mit der Übernahme der Weinmarktordnung im Jahe 2001 in Österreich verboten
- Hintergründe für die Ablehnung von Silberchlorid bestanden in Bedenken bezüglich der Toxizitöt von Silber auf den menschlichen Organismus (Thema auch bei SO_{2} Ersatz: Kolloidales Silber)
- Unklarheiten über die Anwendung und evtl. Um@eltbelastung.

Nachteile der zugelassenen Küpterverbindungen im Vergleich zu Silberchlorid

- Leichtlösliches Kupfersylfô muss im überschuss zugesetzt werden
- Die Entfernung von Kupfer (Grenzwert $1 \mathrm{mg} / \mathrm{I}$) ist nur mit Blauschönung möglich
- Es kann zu Bittertönen kommen
- Reaktion mit schwefligen Aromastoffen, ($3 \mathrm{MH}, 4 \mathrm{MMP}$ ebenfalls Ag)
- Kupfersulfat reagiert nur mit $\mathrm{H}_{2} \mathrm{~S}$ (Jungweinstadium) und Mercaptanen

Vorteile von Silberchlorid

- Schwerlösliche Verbindung in Wasser ($1,88 \mathrm{mg} / \mathrm{L} ; 25^{\circ} \mathrm{C}$): keine Überdosierung
- 2%-ig auf inertem Material (Kaolin, Cellulose) sorgt für gute Verfeilibarkeit
- Reaktivität mit Mercaptanen und Oligosulfiden im Gegensatz zu Kupfer
- Entfernung durch Schichtenfilter (Entkeimungsfiltel) sowohl AgCl als auch $\mathrm{Ag}_{2} \mathrm{~S}$

	Sensory	Cd^{2}	Cu^{2+}	Ag^{+}
S2-	rotten egg	+	+	+
Thiole	s.llphur-like	-	+	+
Oligosulfide	rubber/garlic	-	(+: Ascorbic acid)	+
1,1 Etran dithiole	rubber	-	+/-	+
Thioaceticester	rubber/garlic	-	-	+

HR Dipl.-Ing. Robert Steidl

Der Einsatz von Silberchlorid zuris Böckserbekämpfung

Arbeiten zur Wiederzulassung des BehandIIngsmittels, das
sich gerade bei österreichischen Weinsoiten bewährt hat.

Publikationen

Gössinger, M. und Steidl, R. 1997: Die Feduzierung des Silbergehaltes durch Schichtenfiltration bei mit Silberchlorid behandelten V'einen. In: Mitteilungen Klosterneuburg 47, S. 199-204

Zusammenfassung

Der Einsatevon Silberchlorid zur Böckserbehandlung von Wein ist schonênder und wirksamer als die Anwendung des zugelassenen Kupfersulfats. Es konnte dargestellt werden, dass meist mit geringerer Aufwandmenge gearbeitet werden kann, die Entfernung durch physikalische Filtration möglich ist, und die Deponierung der Rückstände keine Grundwasserbelastung darstellt. Als Resultat wurde dieses Verfahren von der OIV neuerlich akzeptiert.
=>Leider wegen fehlender Spezifikationen immer noch keine Zulassung

Nanosilber als SO_{2} Ersatz?

Auf ein Wort zur Diskussion über kolloidales Silber als SO_{2} Ersatz bei der OIV:

- Einige Studien liefern Hinweise auf die Genotoxizität von Nanosilber. So lliegen Hinweise auf DNA-Schädigungen vor, und nach subkutaner Injektion on nanopartikulärem Silber wurde bei Ratten die Entstehung von bösartigen Tumoren (Sarkomen) beobachtet.
- Nanosilber (Partikelgröße: 1-100 nm): Unfiltrierbar. Penetriert Membranen; auch die Passage durch die Darmwand ist möglich. Silbereinlagerung in Organe (Haut und Leber, Milz, Nieren, Lunge)
- BfR: Nanosilber: Fortschritte in der Analytik, Lücken bei Toxikologie und Exposition 08/2012

- Das BfR empfiehlt Herstellern, auf die Verwendung von nanoskaligem Silber oder nanoskaligen Silberverbindungen in Lebensmitteln und Produkten des täglichen Bedarfs zu verzichten, bis die Datenlage eine3 abschließende gesundheitliche Risikobewertung zulässt und die gesundheitliche Unbedenklichkeit von Produkten sichergestalt werden kann.
- Für Silber als Lebensmittelfarbstoff wird eine Re-Evaluisrung vom ANSPanel der EFSA in absehbarer Zeit durchgeführ, Was eine mögliche Verwendung von Silber in nanoskaliger Fotm betriff, kann auf Artikel 12 der Verordnung (EG) Nr. 1333/2008 ibber Lebensmittelzusatzstoffe verwiesen werden. Danach ist ein Lebensmittelzusatzstoff, der durch Anwendung von Nanotechnologie hergestellt wird, als ein never Zusatzstoff anzusehen. De!nentsprechend ist ein neuer Eintrag in die Gemeinschaftsliste BZW. eine Änderung der Spezifikation erforderlich, bevor der Zusaizstoff in Verkehr gebracht werden darf. Aus Sicht des BfR wäre daze jeweils eine Bewertung durch das ANS-Panel der EFSA erforderlich. (Quelle: BfR)

